

::Produkt-Datenblatt:: | ::Kapitel 3:

Seite 1/6

::Rückschlagventil Typ CSD:: | ::DN015 - 100:: | ::PN6 - 40:: | ::ANSI150 - 300::

Rückschlagventil Typ CSD DN015 - 100

Bezeichnung	Werkstoff		
Gehäuse	s.Tabelle		
Ventilplatte	1.4404		
Federkappe	1.4401		
Feder	1.4401		
O-Ring	s.Tabelle		

Technische Daten

Produkteinstufung gemäss DGRL 97/23/EG, Fluidgruppe 1 Einbau mit Dichtung zwischen Flansche nach DIN EN 1092-1 Form B1, PN 6-40

und ANSI B16.5 Class 150/ 300 RF

Anwendungsdruck max. PN40

Einsatzgrenzen nach DIN EN 1092-1und AD-Merkblätter W10

Dichtheit nach DIN EN 12266-1, Leckrate D (Dichtung M, T) bzw. Leckrate A (Dichtung E, P, V)

Baulänge nach DIN EN 558, Grundreihe 49

Standard Feder bis zu 300°C einsetzbar

Kennzeichnung nach DIN EN 19

Verpackt in Einzelkarton

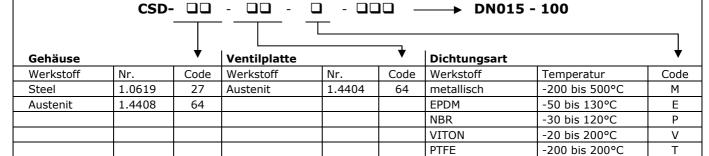
Bezeichnung:

CSD- 64

64

Verwendung

Für Flüssigkeiten, Gase und Dämpfe in allen verfahrenstechnischen Prozessen

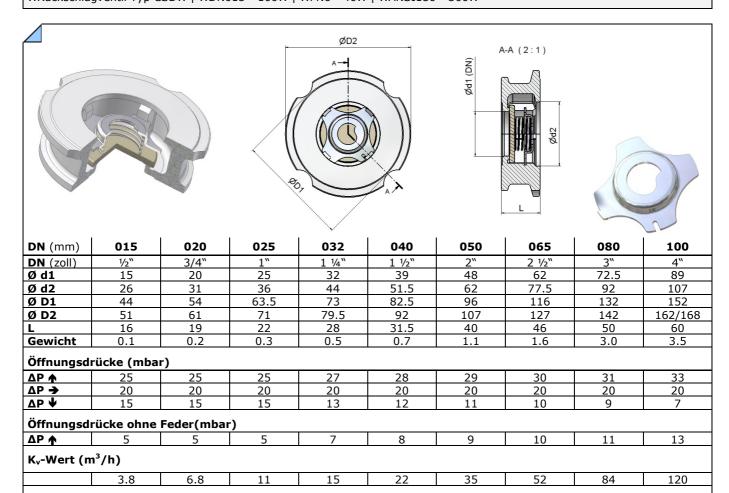

Merkmale

Am Gehäuse integrierter Zentrierbund Ventilplattenführung durch Gehäuserippen Neu konzipierte Federkappe für eine optimale Sicherheit Serienmässig passend für PN 6-40 und ANSI Class 150/ 300

Sonderausführungen

- 100

Federn aus Hastelloy C4 (bis 400°C) und Nimonic (bis 500°C) Sonderfedern für variable Öffnungsdrücke bis max. 400mbar



::Produkt-Datenblatt:: | ::Kapitel 3:

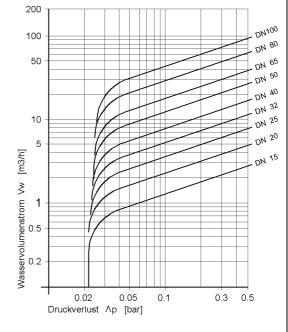
Seite 2/6

::Rückschlagventil Typ CSD:: | ::DN015 - 100:: | ::PN6 - 40:: | ::ANSI150 - 300::

Wenn niedrigste Öffnungsdrücke erforderlich sind, können die Ventile ohne Feder in senkrechte Leitungen mit Durchflussrichtung von unten nach oben eingebaut werden.

Druckverlustdiagramm

Druckverlustdiagramm für Wasser 20°C bei geöffnetem Ventil und waagrechtem Durchfluss.


Zum Bestimmen der Druckverluste für andere Medien ist der äquivalente Wasservolumenstrom zu berechnen.

$$\dot{V}w = \dot{V} \sqrt{\frac{\rho}{1000}}$$

 $\dot{\mathbf{V}}\mathbf{W}$ = äquivalenter Wasservolumenstrom in m3/h ρ = Dichte des Mediums in kg/m3 (Betriebszustand)

 $\dot{\mathbf{V}}$ = Volumenstrom des Mediums in m3/h

(Betriebszustand)

::Produkt-Datenblatt:: | ::Kapitel 3::

Seite 3/6

::Rückschlagventil Typ CVD:: | ::DN015 - 100:: | ::PN6 - 40 bzw. PN6 - 16::

Rückschlagventil Typ CVD DN015 - 100

Bezeichnung	Werkstoff		
Gehäuse	s.Tabelle		
Ventilplatte	s.Tabelle		
Federkappe	1.4401		
Feder	1.4401		
O-Ring	s.Tabelle		

Produkteinstufung gemäss DGRL 97/23/EG, Fluidgruppe 1

Einbau mit Dichtung zwischen Flansche nach DIN EN 1092-1 Form B1, PN 6-40

Anwendungsdruck max. PN40

Einsatzgrenzen nach DIN EN 1092-1und AD-Merkblätter W10

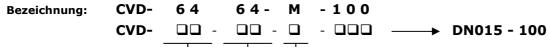
Dichtheit nach DIN EN 12266-1, Leckrate D (Dichtung M, T) bzw. Leckrate A (Dichtung E, P, V)

Baulänge nach DIN EN 558, Grundreihe 49

Standard Feder bis zu 300°C einsetzbar

Kennzeichnung nach DIN EN 19

Verpackt in Einzelkarton


Für Flüssigkeiten, Gase und Dämpfe in allen verfahrenstechnischen Prozessen

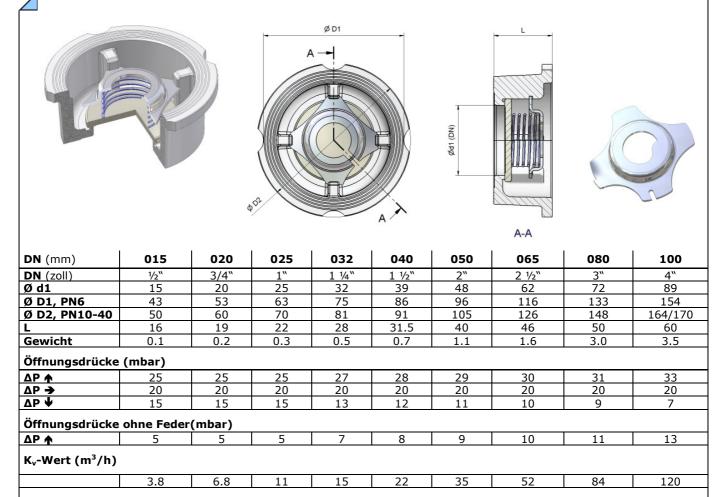
Merkmale

Am Gehäuse integrierter Zentrierbund Ventilplattenführung durch Gehäuserippen Neu konzipierte Federkappe für eine optimale Sicherheit Serienmässig passend für PN 6-40

Sonderausführungen

Federn aus Hastelloy C4 (bis 400°C) und Nimonic (bis 500°C). Sonderfedern für variable Öffnungsdrücke bis max. 500mbar Halteflansche für Einsatz als Belüfter - Vakuumbrecher

Gehäuse		\	Ventilplatte		\	Weichdichtung		\
Werkstoff	Nr.	Code	Werkstoff	Nr.	Code	Werkstoff	Temperatur	Code
Bronze	2.1050	33	Austenit	1.4404	64	metallisch	-200 bis 500°C	М
Austenit Mo-frei	1.4301	65	Austenit Mo-frei	1.4301	65	EPDM	-50 bis 130°C	Е
Uranus	1.4539	68	Uranus	1.4539	68	NBR	-30 bis 120°C	Р
Titan	3.7035	90	Titan	3.7035	90	VITON	-20 bis 200°C	V
Hastelloy B	2.4600	94	Hastelloy B	2.4600	94	PTFE	-200 bis 200°C	Т
Hastelloy C	2.4819	95	Hastelloy C	2.4819	95	Druck und mediumabhängig		



::Produkt-Datenblatt:: | ::Kapitel 3::

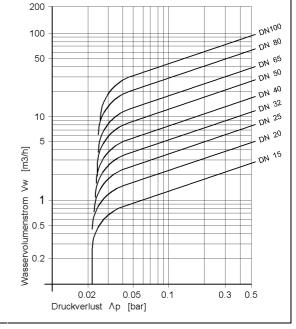
Seite 4/6

::Rückschlagventil Typ CVD:: | ::DN015 - 100:: | ::PN6 - 40 bzw. PN6 - 16::

Wenn niedrigste Öffnungsdrücke erforderlich sind, können die Ventile ohne Feder in senkrechte Leitungen mit Durchflussrichtung von unten nach oben eingebaut werden.

Druckverlustdiagramm

Druckverlustdiagramm für Wasser 20°C bei geöffnetem Ventil und waagrechtem Durchfluss.


Zum Bestimmen der Druckverluste für andere Medien ist der äquivalente Wasservolumenstrom zu berechnen.

$$\dot{V}w = \dot{v} \sqrt{\frac{\rho}{1000}}$$

 $\dot{\mathbf{V}}\mathbf{W}$ = äquivalenter Wasservolumenstrom in m3/h ρ = Dichte des Mediums in kg/m3 (Betriebszustand)

V = Volumenstrom des Mediums in m3/h

(Betriebszustand)

